Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Semin Respir Crit Care Med ; 42(6): 828-838, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768952

ABSTRACT

The past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Camelus/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Outbreaks/prevention & control , Humans , Infection Control/methods , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity
2.
Med Mal Infect ; 50(3): 243-251, 2020 May.
Article in English | MEDLINE | ID: covidwho-1409419

ABSTRACT

Since the first case of human infection by the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia in June 2012, more than 2260 cases of confirmed MERS-CoV infection and 803 related deaths have been reported since the 16th of October 2018. The vast majority of these cases (71%) were reported in Saudi Arabia but the epidemic has now spread to 27 countries and has not ceased 6 years later, unlike SARS-CoV that disappeared a little less than 2 years after emerging. Due to the high fatality rate observed in MERS-CoV infected patients (36%), much effort has been put into understanding the origin and pathophysiology of this novel coronavirus to prevent it from becoming endemic in humans. This review focuses in particular on the origin, epidemiology and clinical manifestations of MERS-CoV, as well as the diagnosis and treatment of infected patients. The experience gained over recent years on how to manage the different risks related to this kind of epidemic will be key to being prepared for future outbreaks of communicable disease.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/physiology , Animals , Antiviral Agents/therapeutic use , Camelus/virology , Chiroptera/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Disease Management , Disease Reservoirs , Epidemics , Extracorporeal Membrane Oxygenation , Genome, Viral , Global Health , Humans , Hygiene , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Risk Factors , Saudi Arabia/epidemiology , Survival Rate , Symptom Assessment , Travel , Viral Vaccines
3.
J Med Virol ; 93(9): 5328-5332, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363671

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the recently identified zoonotic coronaviruses. The one-hump camels are believed to play important roles in the evolution and transmission of the virus. The animal-to-animal, as well as the animal-to-human transmission in the context of MERS-CoV infection, were reported. The camels shed the virus in some of their secretions, especially the nasal tract. However, there are many aspects of the transmission cycle of the virus from animals to humans that are still not fully understood. Rodents played important roles in the transmission of many pathogens, including viruses and bacteria. They have been implicated in the evolution of many human coronaviruses, especially HCoV-OC43 and HCoV-HKU1. However, the role of rodents in the transmission of MERS-CoV still requires more exploration. To achieve this goal, we identified MERS-CoV that naturally infected dromedary camel by molecular surveillance. We captured 15 of the common rodents (rats, mice, and jerboa) sharing the habitat with these animals. We collected both oral and rectal swabs from these animals and then tested them by the commercial MERS-CoV real-time-PCR kits using two targets. Despite the detection of the viral shedding in the nasal swabs of some of the dromedary camels, none of the rodents tested positive for the virus during the tenure of this study. We concluded that these species of rodents did not harbor the virus and are most unlikely to contribute to the transmission of the MERS-CoV. However, further large-scale studies are required to confirm the potential roles of rodents in the context of the MERS-CoV transmission cycle, if any.


Subject(s)
Camelus/virology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Epidemiological Monitoring/veterinary , RNA, Viral/genetics , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Cavity/virology , Rats , Real-Time Polymerase Chain Reaction , Rectum/virology , Rodentia/virology , Saudi Arabia/epidemiology
4.
Methods Mol Biol ; 2099: 89-97, 2020.
Article in English | MEDLINE | ID: covidwho-1292547

ABSTRACT

The Middle East respiratory syndrome (MERS) is the second novel zoonotic disease infecting humans caused by coronavirus (CoV) in this century. To date, more than 2200 laboratory-confirmed human cases have been identified in 27 countries, and more than 800 MERS-CoV associated deaths have been reported since its outbreak in 2012. Rapid laboratory diagnosis of MERS-CoV is the key to successful containment and prevention of the spread of infection. Though the gold standard for diagnosing MERS-CoV infection in humans is still nucleic acid amplification test (NAAT) of the up-E region, an antigen capture enzyme-linked immunosorbent assay (ELISA) could also be of use for early diagnosis in less developed locations. In the present method, a step-by-step guide to perform a MERS-CoV nucleocapsid protein (NP) capture ELISA using two NP-specific monoclonal antibodies is provided for readers to develop their in-house workflow or diagnostic kit for clinical use and for mass-screening project of animals (e.g., dromedaries and bats) to better understand the spread and evolution of the virus.


Subject(s)
Antigens, Viral/immunology , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Nucleocapsid Proteins/immunology , Animals , Camelus/virology , Chiroptera/virology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Zoonoses
5.
Cells ; 10(6)2021 05 23.
Article in English | MEDLINE | ID: covidwho-1243956

ABSTRACT

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Subject(s)
Adaptive Immunity/genetics , Camelus/virology , Communicable Diseases, Emerging/immunology , Coronavirus Infections/immunology , Immunity, Innate/genetics , Zoonoses/immunology , Animals , Antibodies, Viral , Bronchi/cytology , Bronchi/physiology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Camelus/genetics , Camelus/immunology , Cilia/physiology , Communicable Diseases, Emerging/genetics , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Coronavirus Infections/genetics , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Reservoirs/virology , Female , Genetic Predisposition to Disease , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Male , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , United Arab Emirates , Virus Replication/genetics , Virus Replication/immunology , Zoonoses/genetics , Zoonoses/transmission , Zoonoses/virology
6.
Int Rev Immunol ; 40(1-2): 5-53, 2021.
Article in English | MEDLINE | ID: covidwho-1236148

ABSTRACT

Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.


Subject(s)
COVID-19/pathology , Coronaviridae/ultrastructure , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/pathology , Severe acute respiratory syndrome-related coronavirus/immunology , Animals , COVID-19/diagnosis , COVID-19/mortality , Camelus/virology , Chiroptera/virology , Coronaviridae/classification , Disease Reservoirs/virology , Disease Susceptibility/virology , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/mortality , Virus Replication/physiology
7.
Lancet Infect Dis ; 21(3): 385-395, 2021 03.
Article in English | MEDLINE | ID: covidwho-1162009

ABSTRACT

BACKGROUND: Middle East respiratory syndrome (MERS) remains of global public health concern. Dromedary camels are the source of zoonotic infection. Over 70% of MERS coronavirus (MERS-CoV)-infected dromedaries are found in Africa but no zoonotic disease has been reported in Africa. We aimed to understand whether individuals with exposure to dromedaries in Africa had been infected by MERS-CoV. METHODS: Workers slaughtering dromedaries in an abattoir in Kano, Nigeria, were compared with abattoir workers without direct dromedary contact, non-abattoir workers from Kano, and controls from Guangzhou, China. Exposure to dromedaries was ascertained using a questionnaire. Serum and peripheral blood mononuclear cells (PBMCs) were tested for MERS-CoV specific neutralising antibody and T-cell responses. FINDINGS: None of the participants from Nigeria or Guangdong were MERS-CoV seropositive. 18 (30%) of 61 abattoir workers with exposure to dromedaries, but none of 20 abattoir workers without exposure (p=0·0042), ten non-abattoir workers or 24 controls from Guangzhou (p=0·0002) had evidence of MERS-CoV-specific CD4+ or CD8+ T cells in PBMC. T-cell responses to other endemic human coronaviruses (229E, OC43, HKU-1, and NL-63) were observed in all groups with no association with dromedary exposure. Drinking both unpasteurised camel milk and camel urine was significantly and negatively associated with T-cell positivity (odds ratio 0·07, 95% CI 0·01-0·54). INTERPRETATION: Zoonotic infection of dromedary-exposed individuals is taking place in Nigeria and suggests that the extent of MERS-CoV infections in Africa is underestimated. MERS-CoV could therefore adapt to human transmission in Africa rather than the Arabian Peninsula, where attention is currently focused. FUNDING: The National Science and Technology Major Project, National Institutes of Health.


Subject(s)
Camelus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/immunology , Occupational Exposure/statistics & numerical data , T-Lymphocytes/immunology , Zoonoses/epidemiology , Zoonoses/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Camelus/virology , Cohort Studies , Coronavirus Infections/transmission , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Nigeria/epidemiology , Young Adult , Zoonoses/transmission , Zoonoses/virology
8.
J Epidemiol Glob Health ; 11(2): 155-159, 2021 06.
Article in English | MEDLINE | ID: covidwho-1090439

ABSTRACT

Countries in the Middle-East (ME) are tackling two corona virus outbreaks simultaneously, Middle-Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and the current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Both viruses infect the same host (humans) and the same cell (type-II alveolar cells) causing lower respiratory illnesses such as pneumonia. Molecularly, MERS-CoV and SARS-CoV-2 enter alveolar cells via spike proteins recognizing dipeptidyl peptidase-4 and angiotensin converting enzyme-II, respectively. Intracellularly, both viruses hide in organelles to generate negative RNA strands and initiate replication using very similar mechanisms. At the transcription level, both viruses utilise identical Transcription Regulatory Sequences (TRSs), which are known recombination cross-over points during replication, to transcribe genes. Using whole genome alignments of both viruses, we identify clusters of high sequence homology at ORF1a and ORF1b. Given the high recombination rates detected in SARS-CoV-2, we speculate that in co-infections recombination is feasible via TRS and/or clusters of homologies. Accordingly, here we recommend mitigation measure and testing for both MERS-CoV and SARS-CoV-2 in ME countries.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Recombination, Genetic , SARS-CoV-2/genetics , Animals , COVID-19/virology , Camelus/virology , Humans , Middle East/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
9.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: covidwho-1060398

ABSTRACT

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Camelus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Camelus/virology , Cross Reactions , Epitopes , Female , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology
11.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-1008394

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
12.
Onderstepoort J Vet Res ; 87(1): e1-e9, 2020 Dec 21.
Article in English | MEDLINE | ID: covidwho-1000404

ABSTRACT

The first known severe disease caused by a coronavirus (CoV) in humans emerged with the severe acute respiratory syndrome (SARS) epidemic in China, which killed 774 people during its 2002/2003 outbreak. The Middle East respiratory syndrome (MERS) was the second human fatal disease, which started in 2012 in Saudi Arabia and resulted in 858 fatalities. In December 2019, a new virus, SARS-CoV-2 (COVID-19), originating from China, began generating headlines worldwide because of the unprecedented speed of its transmission; 5.2 million people were infected and 338 480 had been reported dead from December 2019 to May 2020. These human coronaviruses are believed to have an animal origin and had reached humans through species jump. Coronaviruses are well known for their high frequency of recombination and high mutation rates, allowing them to adapt to new hosts and ecological niches. This review summarises existing information on what is currently known on the role of wild and domesticated animals and discussions on whether they are the natural reservoir/amplifiers hosts or incidental hosts of CoVs. Results of experimental infection and transmission using different wild, domesticated and pet animals are also reviewed. The need for a One Health approach in implementing measures and practices is highlighted to improve human health and reduce the emergence of pandemics from these zoonotic viruses.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Zoonoses , Animals , COVID-19/etiology , COVID-19/transmission , Camelus/virology , Chiroptera/virology , Coronavirus Infections/etiology , Coronavirus Infections/transmission , Disease Vectors , Global Health , Humans , One Health , Pandemics
13.
Emerg Infect Dis ; 26(1): 173-176, 2020 01.
Article in English | MEDLINE | ID: covidwho-966221

ABSTRACT

We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015-2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09-like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.


Subject(s)
Camelus/virology , Influenza A virus , Orthomyxoviridae Infections/veterinary , Animals , Ethiopia/epidemiology , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Nigeria/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology
14.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-958634

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
15.
Vector Borne Zoonotic Dis ; 21(2): 128-131, 2021 02.
Article in English | MEDLINE | ID: covidwho-926934

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease that was first identified in humans in 2012 in Saudi Arabia. MERS-CoV causes acute and severe respiratory disease in humans. The mortality rate of MERS in humans is ∼35% and >800 deaths have been reported globally as of August 2020. Dromedary camels are a natural host of the virus and the source of zoonotic human infection. In experimental studies, Bactrian camels are susceptible to MERS-CoV infection similar to dromedary camels; however, neither the virus, viral RNA, nor virus-specific antibodies were detected in Bactrian camel field samples so far. The aim of our study was to survey Mongolian camels for MERS-CoV-specific antibodies. A total of 180 camel sera, collected in 2016 and 2017, were involved in this survey: 17 of 180 sera were seropositive with an initial enzyme-linked immunosorbent assay (ELISA) test performed at the State Central Veterinary Laboratory in Mongolia. These 17 positive sera plus 53 additional negative sera were sent to the Rocky Mountain Laboratories, NIAID/NIH, and tested for the presence of antibodies with a similar ELISA, an indirect immunofluorescence assay (IFA), and a virus neutralization test (VNT). In these additional tests, a total of 21 of 70 sera were positive with ELISA and 10 sera were positive with IFA; however, none was positive in the VNT. Based on these results, we hypothesize that the ELISA/IFA-positive antibodies are (1) non-neutralizing antibodies or (2) directed against a MERS-CoV-like virus circulating in Bactrian camels in Mongolia.


Subject(s)
Antibodies, Viral/blood , Camelus/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Disease Reservoirs/virology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Mongolia , Seroepidemiologic Studies
16.
Prev Vet Med ; 185: 105197, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-899416

ABSTRACT

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging viral disease and dromedary camels are known to be the source of human spill over events. A cross-sectional epidemiological surveillance study was carried out in Kenya in 2017 to, 1) estimate MERS-CoV antibody seropositivity in the camel-dense counties of Turkana, Marsabit, Isiolo, Laikipia and Nakuru to identify, and 2) determine the risk factors associated with seropositivity in camels. Blood samples were collected from a total of 1421 camels selected using a multi-stage sampling method. Data were also collected from camel owners or herders using a pre-tested structured questionnaire. The sera from camel samples were tested for the presence of circulating antibodies to MERS-CoV using the anti-MERS-CoV IgG ELISA test. Univariate and multivariable statistical analysis were used to investigate factors potentially associated with MERS-CoV seropositivity in camels. The overall seropositivity in camel sera was 62.9 %, with the highest seropositivity recorded in Isiolo County (77.7 %), and the lowest seropositivity recorded in Nakuru County (14.0 %). When risk factors for seropositivity were assessed, the "Type of camel production system" {(aOR = 5.40(95 %CI: 1.67-17.49)}, "Age between 1-2 years, 2-3 years and above 3 years" {(aOR = 1.64 (95 %CI: 1.04-2.59}", {(aOR = 3.27 (95 %CI: 3.66-5.61)}" and {(aOR = 6.12 (95 %CI: 4.04-9.30)} respectively and "Sex of camels" {(aOR = 1.75 (95 %CI: 1.27-2.41)} were identified as significant predictors of MERS-CoV seropositivity. Our studies indicate a high level of seropositivity to MERS-CoV in camels in the counties surveyed, and highlights the important risk factors associated with MERS-CoV seropositivity in camels. Given that MERS-CoV is a zoonosis, and Kenya possesses the fourth largest camel population in Africa, these findings are important to inform the development of efficient and risk-based prevention and mitigation strategies against MERS-CoV transmission to humans.


Subject(s)
Camelus/virology , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Antibodies, Viral/blood , Camelus/blood , Camelus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross-Sectional Studies , Kenya/epidemiology , Middle East Respiratory Syndrome Coronavirus/immunology , Risk Factors , Surveys and Questionnaires
17.
Epidemiol Infect ; 148: e247, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-867335

ABSTRACT

Dromedary camels remain the currently identified reservoir for the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus is released in the secretions of the infected camels, especially the nasal tract. The virus shedding curve through the nasal secretions was studied. Although human transmission of the virus through the respiratory tract of close contact people with dromedary reported previously, the exact mechanism of transmission is still largely unknown. The main goal of this study was to check the possibility of MERS-CoV shedding in the exhaled air of the infected camels. To achieve this goal, we conducted a follow-up study in one of the dromedary camel herds, December 2018-April 2019. We tested nasal swabs, breath samples from animals within this herd by the real-time PCR. Our results showed that some of the tested nasal swabs and breath were positive from 24 March 2019 until 7 April 2019. The phylogenetic analysis of the obtained S and N gene sequences revealed the detected viruses are clustering together with some human and camel samples from the eastern region, especially from Al-Hufuf city, as well as some samples from Qatar and Jordon. These results are clearly showing the possibility of shedding of the virus in the breath of the infected camels. This could explain, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. This study is confirming the shedding of MERS-CoV in the exhaled air of the infected camels. Further studies are needed for a better understanding of the MERS-CoV.


Subject(s)
Camelus/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Breath Tests , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Phylogeny , RNA, Viral/analysis , Virus Shedding
18.
Emerg Microbes Infect ; 9(1): 2222-2235, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-792972

ABSTRACT

Coronaviruses (CoVs) are enveloped, positive sense, single-stranded RNA viruses. The viruses have adapted to infect a large number of animal species, ranging from bats to camels. At present, seven CoVs infect humans, of which Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus Disease 2019 (COVID-19) in humans. Since its emergence in late 2019, SARS-CoV-2 has spread rapidly across the globe. Healthcare systems around the globe have been stretched beyond their limits posing new challenges to emergency healthcare services and critical care. The outbreak continues to jeopardize human health, social life and economy. All known human CoVs have zoonotic origins. Recent detection of SARS-CoV-2 in pet, zoo and certain farm animals has highlighted its potential for reverse zoonosis. This scenario is particularly alarming, since these animals could be potential reservoirs for secondary zoonotic infections. In this article, we highlight interspecies SARS-CoV-2 infections and focus on the reverse zoonotic potential of this virus. We also emphasize the importance of potential secondary zoonotic events and the One-Health and One-World approach to tackle such future pandemics.


Subject(s)
Coronavirus Infections/virology , Pneumonia, Viral/virology , Zoonoses/virology , Animals , Betacoronavirus/physiology , COVID-19 , Camelus/virology , Chiroptera/virology , Coronavirus Infections/epidemiology , Global Health , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission
19.
J Infect Public Health ; 13(5): 709-717, 2020 May.
Article in English | MEDLINE | ID: covidwho-783325

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) was primarily detected in 2012 and still causing disease in human and camel. Camel and bats have been identified as a potential source of virus for disease spread to human. Although, significant information related to MERS-CoV disease, spread, infection, epidemiology, clinical features have been published, A little information is available on the sequence diversity of Spike protein gene. The Spike protein gene plays a significant role in virus attachment to host cells. Recently, the information about recombinant MERS-CoV has been published. So, this work was designed to identify the emergence of any another recombinant virus in Jeddah, Saudi Arabia. METHODS: In this study samples were collected from both human and camels and the Spike protein gene was amplified and sequenced. The nucleotide and amino acid sequences of MERS-CoV Spike protein gene were used to analyze the recombination, genetic diversity and phylogenetic relationship with selected sequences from Saudi Arabia. RESULTS: The nucleotide sequence identity ranged from 65.7% to 99.8% among all the samples collected from human and camels from various locations in the Kingdom. The lowest similarity (65.7%) was observed in samples from Madinah and Dammam. The phylogenetic relationship formed different clusters with multiple isolates from various locations. The sample collected from human in Jeddah hospital formed a closed cluster with human samples collected from Buraydah, while camel sample formed a closed cluster with Hufuf isolates. The phylogenetic tree by using Aminoacid sequences formed closed cluster with Dammam, Makkah and Duba isolates. The amino acid sequences variations were observed in 28/35 samples and two unique amino acid sequences variations were observed in all samples analyzed while total 19 nucleotides sequences variations were observed in the Spike protein gene. The minor recombination events were identified in eight different sequences at various hotspots in both human and camel samples using recombination detection programme. CONCLUSION: The generated information from this study is very valuable and it will be used to design and develop therapeutic compounds and vaccine to control the MERS-CoV disease spread in not only in the Kingdom but also globally.


Subject(s)
Coronavirus Infections/genetics , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Camelus/virology , Coronavirus Infections/epidemiology , Genes, Viral , Humans , Phylogeny , Saudi Arabia
20.
Genomics ; 112(6): 4993-5004, 2020 11.
Article in English | MEDLINE | ID: covidwho-752712

ABSTRACT

Envelope (E) protein is one of the structural viroporins (76-109 amino acids long) present in the coronavirus. Sixteen sequentially different E-proteins were observed from a total of 4917 available complete SARS-CoV-2 genomes as on 18th June 2020 in the NCBI database. The missense mutations over the envelope protein across various coronaviruses of the ß-genus were analyzed to know the immediate parental origin of the envelope protein of SARS-CoV-2. The evolutionary origin is also endorsed by the phylogenetic analysis of the envelope proteins comparing sequence homology as well as amino acid conservations.


Subject(s)
Coronavirus Envelope Proteins/genetics , Coronavirus/genetics , Mutation, Missense , Animals , Camelus/virology , Cats , Cattle , Chiroptera/virology , Coronavirus Infections/virology , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL